Phylodynamic Inference for Structured Epidemiological Models
نویسندگان
چکیده
Coalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies. While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for increasingly complex demographic scenarios to be considered. The success of this approach has lead to coalescent-based inference methods being applied to populations with rapidly changing population dynamics, including pathogens like RNA viruses. However, fitting epidemiological models to genealogies via coalescent models remains a challenging task, because pathogen populations often exhibit complex, nonlinear dynamics and are structured by multiple factors. Moreover, it often becomes necessary to consider stochastic variation in population dynamics when fitting such complex models to real data. Using recently developed structured coalescent models that accommodate complex population dynamics and population structure, we develop a statistical framework for fitting stochastic epidemiological models to genealogies. By combining particle filtering methods with Bayesian Markov chain Monte Carlo methods, we are able to fit a wide class of stochastic, nonlinear epidemiological models with different forms of population structure to genealogies. We demonstrate our framework using two structured epidemiological models: a model with disease progression between multiple stages of infection and a two-population model reflecting spatial structure. We apply the multi-stage model to HIV genealogies and show that the proposed method can be used to estimate the stage-specific transmission rates and prevalence of HIV. Finally, using the two-population model we explore how much information about population structure is contained in genealogies and what sample sizes are necessary to reliably infer parameters like migration rates.
منابع مشابه
Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology
The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challen...
متن کاملEight challenges in phylodynamic inference
The field of phylodynamics, which attempts to enhance our understanding of infectious disease dynamics using pathogen phylogenies, has made great strides in the past decade. Basic epidemiological and evolutionary models are now well characterized with inferential frameworks in place. However, significant challenges remain in extending phylodynamic inference to more complex systems. These challe...
متن کاملPhylodynamic Inference across Epidemic Scales
Within-host genetic diversity and large transmission bottlenecks confound phylodynamic inference of epidemiological dynamics. Conventional phylodynamic approaches assume that nodes in a time-scaled pathogen phylogeny correspond closely to the time of transmission between hosts that are ancestral to the sample. However, when hosts harbor diverse pathogen populations, node times can substantially...
متن کاملReconciling Phylodynamics with Epidemiology: The Case of Dengue Virus in Southern Vietnam
Coalescent methods are widely used to infer the demographic history of populations from gene genealogies. These approaches-often referred to as phylodynamic methods-have proven especially useful for reconstructing the dynamics of rapidly evolving viral pathogens. Yet, population dynamics inferred from viral genealogies often differ widely from those observed from other sources of epidemiologica...
متن کاملInference for Nonlinear Epidemiological Models Using Genealogies and Time Series
Phylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving populations like those of RNA viruses - increasingly relies upon coalescent approaches to infer past population dynamics from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be used on populations undergoing rapid and ...
متن کامل